120 research outputs found

    Design of Wind Turbine Vibration Monitoring System

    Get PDF
    In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines

    A Consumer-Oriented Incentive Strategy for EV Charging in Multiareas under Stochastic Risk-Constrained Scheduling Framework

    Get PDF

    Characterization of Shewanella sp. Isolated from Cultured Loach Misgurnus anguillicaudatus

    Get PDF
    Shewanella infection of fish has become a significant problem in aquaculture. In September 2014, a disease was seen in cultured loach (Misgurnus anguillicaudatus) in Xuzhou, central China. A gram-negative bacillus was isolated from the diseased loaches and was tentatively named strain MS1, which was then identified as Shewanella sp. by physiological and biochemical characteristics analysis. The strain MS1 showed highest 16S rRNA sequence identities (98.93%, 98.87%) with the latest two species listed (Shewanella sp. MR7, Shewanella sp. MR4). The phylogenetic tree constructed on the basis of 16S rRNA gene sequences strongly indicated that the strain MS1 is most closely related to the new Shewanella strains MR7 and MR4. The isolate MS1 was confirmed as the pathogen of the infected loaches by experimental reinoculation. The strain was susceptible to most antimicrobial agents tested, but resistant to glycopeptides (vancomycin, teicoplanin) and lincosamide (lincomycin, clindamycin). This is the second report on Shewanella sp. isolated from the diseased loach

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Multiparametric Cardiovascular Magnetic Resonance in Acute Myocarditis: Comparison of 2009 and 2018 Lake Louise Criteria With Endomyocardial Biopsy Confirmation.

    Get PDF
    Background: Cardiac magnetic resonance (CMR) has been shown to improve the diagnosis of myocarditis, but no systematic comparison of this technique is currently available. The purpose of this study was to compare the 2009 and 2018 Lake Louise Criteria (LLC) for the diagnosis of acute myocarditis using 3.0 T MRI with endomyocardial biopsy (EMB) as a reference and to provide the cutoff values for multiparametric CMR techniques. Methods: A total of 73 patients (32 ± 14 years, 71.2% men) with clinically suspected myocarditis undergoing EMB and CMR with 3.0 T were enrolled in the study. Patients were divided into two groups according to EMB results (EMB-positive and -negative groups). The CMR protocol consisted of cine-SSFP, T2 STIR, T2 mapping, early and late gadolinium enhancement (EGE, LGE), and pre- and post-contrast T1 mapping. Their potential diagnostic ability was assessed with receiver operating characteristic curves. Results: The myocardial T1 and T2 relaxation times were significantly higher in the EMB-positive group than in the EMB-negative group. Optimal cutoff values were 1,228 ms for T1 relaxation times and 58.5 ms for T2 relaxation times with sensitivities of 86.0 and 83.7% and specificities of 93.3 and 93.3%, respectively. The 2018 LLC had a better diagnostic performance than the 2009 LLC in terms of sensitivity, specificity, positive predictive value, and negative predictive value. T1 mapping + T2 mapping had the largest area under the curve (0.95) compared to other single or combined parameters (2018 LLC: 0.91; 2009 LLC: 0.76; T2 ratio: 0.71; EGEr: 0.67; LGE: 0.73; ). The diagnostic accuracy for the 2018 LLC was the highest (91.8%), followed by T1 mapping (89.0%) and T2 mapping (87.7%). Conclusion: Emerging technologies such as T1/ T2 mapping have significantly improved the diagnostic performance of CMR for the diagnosis of acute myocarditis. The 2018 LLC provided the overall best diagnostic performance in acute myocarditis compared to other single standard CMR parameters or combined parameters. There was no significant gain when 2018LLC is combined with the EGE sequence

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    PERCEIVED PHYSICAL EXPERIENCES AND MENTAL REPRESENTATIONS

    No full text
    In a recent paper, Stamps (2011a) reported findings on how two environmental properties, namely, boundary height and horizontal area within a boundary, influence impressions of enclosure. He found that the boundary height had a greater influence on impressions of enclosure than the horizontal area within a boundary. Enclosure correlated at 0.85 with boundary height and at -0.60 with horizontal area. This note suggests that environmental features are related not only to a concrete experiential variable but also to mental representations of abstract concepts.</p

    A practical consolidation solution based on the time-dependent discharge around PVDs

    Get PDF
    This study presents a practical consolidation solution for ground improvement used prefabricated vertical drains (PVDs) by incorporating the available time-dependent discharge rate around PVDs, which can be easily obtained by laboratory test and field monitoring. Only radial consolidation is taken into account in the derivation to significantly simplify the final expression as the vertical consolidation can be neglected in a typical soft ground improvement project. The proposed solution is verified by the finite element method (FEM) and two case histories, including vacuum preloading and surcharge loading. The verification results show that the proposed solution can predict the development of excess pore water pressure (EPWP) and the degree of consolidation (DOC) effectively and accurately. Design charts and framework are developed to assist geotechnical engineers in using this solution for field construction and performance prediction
    corecore